

Performance evaluation of municipal heating plants with biomass fired ORC cogeneration units

Jacek Kalina, Mateusz Świerzewski

Institute of Thermal Technology

Silesian University of Technology

Gliwice, Poland

Agenda - Key points

- Introduction
- Problems
- Performance study
- Possible improvements
- Conclusions

www.itc.polsl.pl / Instytut Techniki Cieplnej / Politechnika Śląska / Gliwice

http://orc-world-map.org/

Introduction

Organic Rankine Cycle has become popular technology for utilisation of locally available biomass resources

http://orc-world-map.org/

Introduction

Status of biomass fired cogeneration in Poland:

- Several conventional steam plants (P > 2 MWel)
- Several gasification + ICE plants (R&D)
- 11 ORC plants (0.2 MWel < P < 1.5 MWel)</p>
- ORC plants of single manufacturer (Turboden + VAS; Turboden + Politechnik)

Introduction

Technology advantages:

- Availability of small-scale units (200 kW 3000 MW)
- Wide operating window (10% 100% electric load)
- Flat part load characteristics
- Simple modular systems, simple automatic operation

Technology disadvantages:

- High investment costs
- Low power generation efficiency
- Expensive working fluid
- Low economic performance subsidies are required

Economic issues

Support mechanism for electricity from RES in Poland is based on tradeable certificates of origin:

Is there any chance for improvement ?

How to find solution ?

Software solutions

Hardware solutions

Current state analysis

POLISH - GERMAN SUSTAINABILITY RESEARCH PROGRAMME STAIR

Project: System integration of biomass fired cogeneration plants

IntBioCHP www.intbiochp.polsl.pl

Research plants

Holzheizkraftwerk Scharnhauser Park (DE) ORC + Gas boilers

MPGK Krosno Ltd – Municipal Holding (PL) ORC + Coal boilers

Biomass as fuel

Biomass fuel – as received

(DE) Low quality biomass

(PL) High and medium quality biomass

Biomass as fuel

(DE) Low quality biomass

(PL) High and medium quality biomass

Process

www.itc.polsl.pl 🎽 Instytut Techniki Cieplnej 🏓 Politechnika Śląska 🏓 Gliwice

ORC module data

ORC model: T14-CHP SPLIT Manufacturer: TURBODEN S.r.I. (Italy)

Quantity	Unit	Value	
Thermal oil loop			
Nominal temperature HT oil loop (in/out)	°C	310/252	
Thermal power input HT loop	kW	6310	
Nominal temperature LT oil loop (in/out)	°C	250/130	
Thermal power input LT loop	kW	585	
Overall thermal input	kW	6715	
Cooling water circuit			
Heating network water temperature (in/out)	°C	60/80	
Thermal power to the water circuit	kW	5341	
Performance			
Gross active electric power	kW	1317	
Gross electric energy efficiency	%	19.6	
Captive power consumption	kW	62	
Net active electric power	kW	1255	
Net electric efficiency	%	18.7	
Indicative turbine isentropic efficiency	%	Up to 90	
Indicative biomass consumption	kg/h	2935	

System operation - heating

General performance

Performance indices

Parameter	Without ORC	With	
Annual heat production	265 262 GJ		
Heat from ORC	-	136 238 GJ	
Heat from coal boilers	265 262 GJ	129 024 GJ	
Electricty production	-	8 397,82 MWh	
Biomass consumption	-	21 890 Mg	
Coal consumption	14 845 Mg	7 384 Mg	
Average efficiency of boiler plant	77,37%	75,78%	
Average power generation efficiency	-	15,65%	
Avarage overall efficiency	77,37%	81,31%	

Emissions

Gliwice

IntBioCHP Anticipated economic results

Electric power generation

www.itc.polsl.pl 🏓 Instytut Techniki Cieplnej 🏓 Politechnika Śląska 🏓 Gliwice

Electric power generation

Sample hour - summer

Plant modelling studies

Initial modeling studies

The relation between isentropic efficiency and the working fluid mass flow rate was elaborated assuming **constant turbine inlet and outlet conditions** and power output as specified in the technical documentation

Initial modeling studies

www.itc.polsl.pl 🖌 Instytut Techniki Cieplnej 🖌 Politechnika Śląska 🖊 Gliwice

Possible improvements

www.itc.polsl.pl 🖌 Instytut Techniki Cieplnej 🖌 Politechnika Śląska 🖌 Gliwice

Conclusions

- The techology does not bring favourable financial results
- There is a way for improvement. It consists of better system integration based on software and hardware solutions.
- Additional revenues can be generated by improved electricity generation performance (power and efficiency) and sales on balancing market.

Thank you for your attention

Institute of Thermal Technology Silesian University of Technology Konarskiego 22, 44-100 Gliwice jacek.kalina@polsl.pl http://www.itc.polsl.pl Tel.: +48 32 2371742 Fax: +48 32 2372872

